Chebyshev's inequality.

In this section we are aiming to give bounds on the prime counting function $\pi(x)$. We start with the more amenable

$$
\psi(x)=\sum_{m \leq x} \Lambda(m)
$$

Lemma 2.12

$$
\sum_{m \leq x} \Lambda(m)\left[\frac{x}{m}\right]=x \log x-x+O(\log x)
$$

Proof Evaluate the sum $\sum_{n \leq x} \log n$ in two different ways.
First, from (2) above $\log n=\sum_{m \mid n} \Lambda(m)$, so

$$
\sum_{n \leq x} \log n=\sum_{n \leq x} \sum_{m \mid n} \Lambda(m)=\sum_{m \leq x} \Lambda(m) \sum_{\substack{n \leq x \\ m \mid n}} 1
$$

Here we have interchanged summations. We have not 'thrown away' any of the restrictions on m and n, instead we have reinterpreted them. For instance, the inner sum has gone from one over m, the divisors of n, to one over n, the multiples of m.

In the final inner sum, the condition $m \mid n$ means that n can be written as $s m$ for some $s \in \mathbb{Z}$. Thus

$$
\sum_{\substack{n \leq x \\ m \mid n}} 1=\sum_{s m \leq x} 1=\sum_{s \leq x / m} 1=\left[\frac{x}{m}\right]
$$

Hence

$$
\sum_{n \leq x} \log n=\sum_{m \leq x} \Lambda(m)\left[\frac{x}{m}\right]
$$

Alternatively, by Lemma 2.11 we have

$$
\sum_{n \leq x} \log n=x \log x-x+O(\log x)
$$

Comparing these last two results gives the theorem.

We can now give an asymptotic result on a 'weighted form' of $\psi(x)$. The weight used is

$$
w(u)=[u]-2\left[\frac{u}{2}\right],
$$

for $u \in \mathbb{R}$. Given $u \in \mathbb{R}$, let $m=[u]$, so $m \leq u<m+1$. There are two cases: m even or odd.

If $m=2 n$, i.e. even then $2 n \leq u<2 n+1$, so $n \leq u / 2 \leq n+1 / 2$. Hence

$$
\left[\frac{u}{2}\right]=n=\frac{m}{2},
$$

which with $[u]=m$ gives

$$
w(u)=[u]-2\left[\frac{u}{2}\right]=m-2 \frac{m}{2}=0 .
$$

If $m=2 n+1$, i.e. odd, then $2 n+1 \leq u<2 n+2$, so $n+1 / 2 \leq u / 2<n+1$.
Hence

$$
\left[\frac{u}{2}\right]=n=\frac{m-1}{2},
$$

which with $[u]=m$ gives

$$
w(u)=[u]-2\left[\frac{u}{2}\right]=m-2 \frac{(m-1)}{2}=1 .
$$

Thus

$$
w(u)= \begin{cases}1 & \text { if } m \leq x<m+1 \text { for odd } m \in \mathbb{Z} \\ 0 & \text { if } m \leq x<m+1 \text { for even } r \in \mathbb{Z}\end{cases}
$$

a square-tooth function, period 2 . In particular $0 \leq w(u) \leq 1$ for all $u \in \mathbb{R}$.
Lemma 2.13 For $x>1$,

$$
\sum_{m \leq x} \Lambda(m) w\left(\frac{x}{m}\right)=x \log 2+O(\log x)
$$

Proof By definition of the weight function,

$$
\sum_{m \leq x} \Lambda(m) w\left(\frac{x}{m}\right)=\sum_{m \leq x} \Lambda(m)\left[\frac{x}{m}\right]-2 \sum_{m \leq x} \Lambda(m)\left[\frac{x}{2 m}\right]
$$

In the second sum consider the terms with $x / 2<m \leq x$. Rearranging these inequalities we get

$$
\frac{1}{2} \leq \frac{x}{2 m}<1 \quad \text { and so } \quad\left[\frac{x}{2 m}\right]=0
$$

Thus these m can be discarded with no error, leaving

$$
\begin{aligned}
\sum_{m \leq x} \Lambda(m) w\left(\frac{x}{m}\right) & =\sum_{m \leq x} \Lambda(m)\left[\frac{x}{m}\right]-2 \sum_{m \leq x / 2} \Lambda(m)\left[\frac{x / 2}{m}\right] \\
& =(x \log x-x+O(\log x))-2\left(\frac{x}{2} \log \frac{x}{2}-\frac{x}{2}+O(\log x)\right)
\end{aligned}
$$

by Lemma 2.12, applied twice, once with x and then with $x / 2$. Hence

$$
\sum_{m \leq x} \Lambda(m) w\left(\frac{x}{m}\right)=x \log 2+O(\log x)
$$

We now wish to remove the weight function w from the last result, but we can only do so at the cost of replacing the asymptotic result by upper and lower bounds.

Theorem 2.14 For all $x>1$,

$$
\begin{equation*}
\sum_{m \leq x} \Lambda(m) \geq(\log 2) x+O(\log x) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{x / 2 \leq m \leq x} \Lambda(m) \leq(\log 2) x+O(\log x) \tag{8}
\end{equation*}
$$

Thus

$$
\psi(x) \geq(\log 2) x+O(\log x)
$$

and

$$
\psi(x)-\psi(x / 2) \leq(\log 2) x+O(\log x)
$$

Proof Using the upper bound $w(u) \leq 1$ for all u within Lemma 2.13 gives

$$
x \log 2+O(\log x)=\sum_{m \leq x} \Lambda(m) w\left(\frac{x}{m}\right) \leq \sum_{m \leq x} \Lambda(m),
$$

the first result of the theorem.
For the second result, (8), use Lemma 2.13 again but discard the terms $m \leq x / 2$ from the sum, so

$$
\begin{equation*}
x \log 2+O(\log x)=\sum_{m \leq x} \Lambda(m) w\left(\frac{x}{m}\right) \geq \sum_{x / 2<m \leq x} \Lambda(m) w\left(\frac{x}{m}\right) \tag{9}
\end{equation*}
$$

Here we have used the fact that $w(u) \geq 0$ and so we have discarded nonnegative terms obtaining a lower bound.

For the remaining terms with $x / 2<m \leq x$, which rearranges first to $1 \leq x / m<2$ for which $[x / m]=1$. It also rearranges to $1 / 2 \leq x / 2 m<1$ for which $[x / 2 m]=0$. Thus

$$
w\left(\frac{x}{m}\right)=\left[\frac{x}{m}\right]-2\left[\frac{x}{2 m}\right]=1-2 \times 0=1
$$

and hence

$$
x \log 2+O(\log x) \geq \sum_{x / 2<m \leq x} \Lambda(m) w\left(\frac{x}{m}\right)=\sum_{x / 2<m \leq x} \Lambda(m) .
$$

Aside The proof above lacks motivation at (9), why 'throw away' the integers $\leq x / 2$? Answer: because I know what is coming next. Alternatively, because $w(u)$ is a square-tooth function, period 2 , then

$$
\begin{aligned}
w\left(\frac{x}{m}\right) & = \begin{cases}1 & \text { if } r \leq \frac{x}{m}<r+1 \text { for odd } r \\
0 & \text { if } r \leq \frac{x}{m}<r+1 \text { for even } r\end{cases} \\
& = \begin{cases}1 & \text { if } \frac{x}{r+1} \leq m<\frac{x}{r} \text { for odd } r \\
0 & \text { if } \frac{x}{r+1} \leq m<\frac{x}{r} \text { for even } r\end{cases}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{m \leq x} \Lambda(m) w\left(\frac{x}{m}\right) & =\sum_{r \text { odd }} \sum_{\frac{x}{r+1} \leq m<\frac{x}{r}} \Lambda(m) \\
& =\sum_{\frac{x}{2} \leq m \leq x} \Lambda(m)+\sum_{\frac{x}{4} \leq m<\frac{x}{3}} \Lambda(m)+\sum_{\frac{x}{6} \leq m<\frac{x}{5}} \Lambda(m)+\ldots .
\end{aligned}
$$

There is no way to fill in the gaps $x / 3 \leq m<x / 2, x / 5 \leq m<x / 4$, etc. on the right hand side, so we look instead for upper and lower bounds on the left hand sum. For the upper bound we fill in all the gaps getting a complete sum of $\Lambda(m)$ over $m \leq x$. For the lower bound we 'throw away' all sums other than the first, over $x / 2 \leq m \leq x$.

We now estimate from above the sum of $\Lambda(m)$ over all integers $m \leq x$, not just for $x / 2<m \leq x$. This is done at a cost of doubling the upper bound of $(\log 2) x$.

Corollary 2.15 For all $x>1$,

$$
\sum_{m \leq x} \Lambda(m) \leq(2 \log 2) x+O\left(\log ^{2} x\right)
$$

Combined with (7) and we have one form of Chebyshev's inequality (or sometimes C̆ebys̆ev), namely

$$
\begin{equation*}
(\log 2) x+O(\log x) \leq \psi(x) \leq(2 \log 2) x+O\left(\log ^{2} x\right) \tag{10}
\end{equation*}
$$

Proof We split the sum over $m \leq x$ into a union of subintervals

$$
\left[\frac{x}{2^{j+1}}, \frac{x}{2^{j}}\right]
$$

for $j \geq 0$. If $x / 2^{j}<1$ this interval contains no integers so we can restrict $j \leq J$ where J satisfies

$$
\frac{x}{2^{J+1}}<1 \leq \frac{x}{2^{J}}
$$

Thus J is of size $O(\log x)$. Then we apply (8) in the midst of

$$
\begin{aligned}
\sum_{m \leq x} \Lambda(m) & =\sum_{j=0}^{J} \sum_{\frac{x}{2^{j+1}}<m \leq \frac{x}{2^{j}}} \Lambda(m) \\
& \leq \sum_{j=0}^{J}\left((\log 2) \frac{x}{2^{j}}+O(\log x)\right) \\
& =(\log 2) x \sum_{j=0}^{J} \frac{1}{2^{j}}+O(J \log x) .
\end{aligned}
$$

The error term $J \log x=O\left(\log ^{2} x\right)$ while, for the main term, we complete the sum to infinity and sum the geometric series to gain the additional factor of 2 .

Aside You might think that in the argument above we should have said

$$
\sum_{j=0}^{J} \sum_{\frac{x}{2^{j+1}}<m \leq \frac{x}{2^{j}}} \Lambda(m) \leq \sum_{j=0}^{J}\left((\log 2) \frac{x}{2^{j}}+O\left(\log \left(\frac{x}{2^{j}}\right)\right)\right)
$$

but this would have given no advantage, so we note that in the error term $\log \left(x / 2^{j}\right) \leq \log x$ and continue as in the proof.

End of Aside

Note an interval of the form $[y, 2 y]$ for any $y \in \mathbb{R}$ is called a dyadic interval. It is a common method in Number Theory to split an interval into a union of dyadic intervals.

The above result (10) was true for all $x>1$ A sometimes more usable form is

Corollary 2.16 Chebyshev's inequality Let $\varepsilon>0$ be given. Then

$$
\begin{equation*}
(\log 2-\varepsilon) x<\psi(x)<(2 \log 2+\varepsilon) x \tag{11}
\end{equation*}
$$

for $x>x_{0}(\varepsilon)$, i.e. for all sufficiently large x.
Proof The result $\psi(x) \geq(\log 2) x+O(\log x)$ above means that $\psi(x) \geq$ $(\log 2) x+\mathcal{E}(x)$ for some function \mathcal{E} satisfying $|\mathcal{E}(x)|<C \log x$ for some $C>0$. Yet we know that logarithms grow slower than any power of x, so $C \log x<\varepsilon x$ for all $x>x_{1}(\varepsilon)$, i.e. x sufficiently large. Thus for such x we have

$$
\mathcal{E}(x)>-C \log x>-\varepsilon x
$$

in which case $\psi(x) \geq(\log 2) x-\varepsilon x$.
The upper bound in (11) follows from $\psi(x) \leq(\log 2) x+O\left(\log ^{2} x\right)$ in the same way, though perhaps with a different $x_{2}(\varepsilon)$. Choose $x_{0}(\varepsilon)=$ $\max \left(x_{1}(\varepsilon), x_{2}(\varepsilon)\right)$.

After all this work though, we will use Chebyshev's result below in the weak form $\psi(x)=O(x)$ for all $x>1$ which follows from (10).

Relations between $\psi(x), \pi(x)$ and $\theta(x)$; further Chebyshev inequalities

We could start with the simple observation that

$$
\begin{equation*}
\theta(x)=\sum_{p \leq x} \log p \leq \sum_{p^{r} \leq x} \log p=\psi(x) . \tag{12}
\end{equation*}
$$

We can, though, prove an asymptotic result.
Lemma 2.17 For $x \geq 2$,

$$
\begin{equation*}
\psi(x)=\theta(x)+O\left(x^{1 / 2}\right), \tag{13}
\end{equation*}
$$

Proof From the definition of $\Lambda(n)$ as $\log p$ if $n=p^{r}, 0$ otherwise,

$$
\psi(x)=\sum_{p \leq x} \sum_{\substack{x \geq 1 \\ p^{r} \leq x}} \log p=\sum_{r \geq 1} \sum_{p^{r} \leq x} \log p
$$

on interchanging the summations

$$
=\sum_{r \geq 1} \sum_{p \leq x^{1 / r}} \log p=\sum_{r \geq 1} \theta\left(x^{1 / r}\right) .
$$

This is, in fact, a finite sum since $\theta\left(x^{1 / r}\right)=0$ if $x^{1 / r}<2$, i.e. $r>$ $\log x /(\log 2)$. Hence

$$
\begin{equation*}
\theta(x)<\psi(x)=\sum_{r \geq 1} \theta\left(x^{1 / r}\right)=\theta(x)+\theta\left(x^{1 / 2}\right)+\sum_{r \geq 3} \theta\left(x^{1 / r}\right) . \tag{14}
\end{equation*}
$$

Thus

$$
\begin{align*}
|\psi(x)-\theta(x)| & \leq \theta\left(x^{1 / 2}\right)+\sum_{r \geq 3} \theta\left(x^{1 / r}\right) \\
& \leq \psi\left(x^{1 / 2}\right)+\sum_{r \geq 3} \psi\left(x^{1 / r}\right) \tag{12}\\
& \ll x^{1 / 2}+\sum_{3 \leq r \leq \log x / \log 2} x^{1 / r}
\end{align*}
$$

using Chebyshev's inequality in the form $\psi\left(x^{1 / r}\right) \ll x^{1 / r}$. We take the largest term out of this sum to get

$$
\ll x^{1 / 2}+x^{1 / 3} \sum_{3 \leq r \leq \log x / \log 2} 1 \ll x^{1 / 2}+x^{1 / 3} \log x \ll x^{1 / 2}
$$

Check what would have happened if we had not taken the $r=2$ term aside in (14).

We can then deduce another form of
Lemma 2.18 Chebyshev's inequality For all $\varepsilon>0$

$$
(\log 2-\varepsilon) x<\theta(x)<(2 \log 2+\varepsilon) x
$$

for all $x>x_{3}(\varepsilon)$.
Proof Not given, see Appendix
From this it is straightforward to prove
Corollary 2.19 Given $c>2$ the interval $[x, c x]$ contains a prime for all x sufficiently large, depending on c.

Proof Subtracting the upper bound $\theta(x)<(2 \log 2+\varepsilon) x$ from the lower bound $\theta(c x) \geq(\log 2-\varepsilon) c x$ gives

$$
\begin{aligned}
\theta(c x)-\theta(x) & \geq(\log 2-\varepsilon) c x-(2 \log 2+\varepsilon) x \\
& =((c-2) \log 2-(1+c) \varepsilon) x
\end{aligned}
$$

So choose ε to satisfy $(c-2) \log 2-(1+c) \varepsilon>0$. For example,

$$
\varepsilon=\frac{(c-2) \log 2}{2(1+c)}>0
$$

would suffice. For then $\theta(c x)-\theta(x)>0$, which means there exists a prime between x and $c x$.
Aside Bertrand's Postulate states that there exists a prime between x and $2 x$ for all sufficiently large x. To prove this we would need a stronger form of Chebyshev's result. Chebyshev himself proved Corollary 2.16 with $\log 2 \approx 0.693471 \ldots$ replaced by $\kappa=\log \left(2^{1 / 2} 3^{1 / 3} 5^{1 / 5} 30^{-1 / 30}\right) \approx 0.921292 \ldots$ and $2 \log 2 \approx 1.386294 \ldots$. replaced by $6 \kappa / 5 \approx 1.105550 \ldots$ respectively. These values would give the Corollary for any $c>6 / 5$ and it would then include Bertrand's Postulate.

End of Aside

Having gone from $\psi(x)$ to $\theta(x)$ in Lemma 2.17 we now wish to go between the weighted sum $\theta(x)$ and the unweighted $\pi(x)$, i.e. between $\sum_{p \leq x} \log p$ and $\sum_{p \leq x} 1$.

This is achieved by Partial Summation.

Theorem 2.20 For $x \geq 2$,

$$
\begin{align*}
\pi(x) & =\frac{\theta(x)}{\log x}+\int_{2}^{x} \theta(t) \frac{d t}{t \log ^{2} t} \\
& =\frac{\theta(x)}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) \tag{15}
\end{align*}
$$

Proof Start with partial summation, so

$$
\begin{aligned}
\pi(x) & =\sum_{p \leq x} 1=\sum_{p \leq x} \frac{\log p}{\log p} \\
& =\sum_{p \leq x} \log p\left(\frac{1}{\log x}-\left(\frac{1}{\log x}-\frac{1}{\log p}\right)\right) \\
& =\frac{1}{\log x} \sum_{p \leq x} \log p+\sum_{p \leq x} \log p \int_{p}^{x} \frac{d t}{t \log ^{2} t} \\
& =\frac{\theta(x)}{\log x}+\int_{2}^{x} \theta(t) \frac{d t}{t \log ^{2} t} .
\end{aligned}
$$

For the estimation of the integral apply (13) along with Chebyshev's upper bound to deduce $\theta(t) \ll t$. Then splitting the integral at \sqrt{x} we get

$$
\int_{2}^{x} \theta(t) \frac{d t}{t \log ^{2} t} \ll \int_{2}^{x} \frac{d t}{\log ^{2} t}=\int_{2}^{\sqrt{x}} \frac{d t}{\log ^{2} t}+\int_{\sqrt{x}}^{x} \frac{d t}{\log ^{2} t}
$$

In the first integral $t \geq 2$ so $\log t \geq \log 2$ and thus

$$
\int_{2}^{\sqrt{x}} \frac{d t}{\log ^{2} t} \leq \frac{\sqrt{x}-2}{\log ^{2} 2}=O(\sqrt{x})
$$

In the second integral $t \geq \sqrt{x}$ so $\log t \geq(1 / 2) \log x$ and thus

$$
\int_{\sqrt{x}}^{x} \frac{d t}{\log ^{2} t} \leq \frac{4}{\log ^{2} x}(x-\sqrt{x})=O\left(\frac{x}{\log ^{2} x}\right)
$$

Here both integrals were estimated by

$$
\int_{a}^{b} f(t) d t \leq \operatorname{lub}_{[a, b]} f(t) \times(b-a) .
$$

Combining,

$$
\int_{2}^{x} \theta(t) \frac{d t}{t \log ^{2} t}=O(\sqrt{x})+O\left(\frac{x}{\log ^{2} x}\right)=O\left(\frac{x}{\log ^{2} x}\right) .
$$

Please Note This method of bounding an integral by splitting it at \sqrt{x} is important and should be remembered. It works when the integrand changes a lot on the short interval $[1, \sqrt{x}]$, but changes little over the longer $[\sqrt{x}, x]$. This is a property of the logarithm, since $\log \sqrt{x}=(\log x) / 2$.

We could have split the integral at x^{α} for any $0<\alpha<1$. We choose $\alpha=1 / 2$ simply as the "simplest" number less than 1.

Now we come to the final version of

Corollary 2.21 Chebyshev's inequality For all $\varepsilon>0$

$$
(\log 2-\varepsilon) \frac{x}{\log x}<\pi(x)<(2 \log 2+\varepsilon) \frac{x}{\log x}
$$

for all $x>x_{4}(\varepsilon)$.
Proof Not given, see Appendix

